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Abstract 
Military  test  ranges  containing unexploded ord- 

nance  due  to  live-fire  testing  and  training  exercises are 
a significant  safety  problem in many locations. Au- 
tomated  cleanup of such  sites  is a  challenging goal. 
Towards  this  end,  this  paper describes algorithms  to 
detect a type of ordnance in current usage using color 
imagery.  The  techniques are designed to run in real- 
time  using  off-the-shelf hardware for  use  on  an  un- 
manned ground vehicle.  Our  methodology  is  to quickly 
detect  candidate  locations  using color  and stereo  infor- 
mation.  Additional processing is  then applied to  the 
candidate  locations in order to  eliminate  false  alarms. 
This  technique  have been tested on a set of imagery 
from a  live-fire test range with  outstanding  results. 

1 Introduction 
Cleanup of unexploded  ordnance in military test 

ranges is a  dangerous task  that is currently performed 
by human  technicians walking through the range, vi- 
sually  detecting  unexploded  ordnance,  and  performing 
remediation.  Automating this  task will both reduce 
the cost of cleaning the  test ranges and eliminate the 
danger to  the technicians. We are working towards 
this goal through the use of computer vision to recog- 
nize the ordnance from an unmanned  ground vehicle. 

Our  methods have  been  designed towards a scenario 
where the vehicle traverses a test  range at approxi- 
mately 5 mph. As the vehicle traverses, the ordnance 
recognition system  examines the  terrain in front of the 
vehicle looking for instances of ordnance.  In this work, 
we have concentrated  on  a  type of ordnance called 
BLU-97, which is in current  usage in U S .  military  test 
ranges. The  body of this  type of ordnance is cylindri- 
cal and  it is 20 centimeters  long,  with a 6 centimeter 
diameter.  When new, the  ordnance is bright yellow in 
color, but  it is often  weathered  in  practice  on the  test 
range. 

We have  designed algorithms for use in  this scenario 
that can  run  in  real-time (2-3 frames  per  second) us- 
ing off-the-shelf hardware to ensure that  the resulting 
system is timely and cost effective. Our methodology 
is to first  detect  candidate  locations very quickly us- 
ing color and  stereo  data. Once the candidates have 
been detected, we can  apply  additional  computation 

to reduce false alarms,  since much of the image has 
been eliminated from consideration. Finally, eviden- 
tial reasoning is used to combine the information for 
the hypothesis  detection and verification modules  in 
order to make a final decision on  each  candidate. 

These  algorithms have  been evaluated using a test 
set collected at a live-fire test  range  near Nellis  Air 
Force  Base. The results  indicate that  the system is ca- 
pable of a very  high rate of detection  and few false pos- 
itives, while requiring  limited  computation resources. 
We conclude with  some lessons learned  from this work. 

2 Hypothesis detection 
Our  approach to detecting  candidate  locations of 

ordnance  in the image is to first classify each pixel 
as ordnance-like or  non-ordnance-like  according to  the 
color of the pixel. The  candidates  are  then identified 
by locating blocks of connected ordnance-like pixels in 
the image.  See Figure 1. 

It has been  shown that, under  some  simple  assump- 
tions about  the scene, normalized color-space coordi- 
nates  are independent of the scene geometry [2]: 

(R,  G, B )  
J R ~  + ~2 +- ~2 

(r ,  b, 9 )  = (1) 

Thus, for scene points that  are illuminated by the 
same  spectral power distribution, the normalized  im- 
age color is (largely) invariant to  the orientation of 
the scene point,  the  orientation of the illumination, 
and  the overall brightness of the illumination. If  we 
can  approximate  sunlight  as having a constant color 
and disregard  specularity and inter-reflection effects, 
the normalized ordnance color is roughly  constant. Of 
course, discoloration due  to weathering and  other ef- 
fects,  such as violations of the assumptions, will cause 
variation  in the color. In  our  application,  discoloration 
of the  ordnance results in greater  variation in the im- 
age  chromaticities than illumination effects. We have 
thus chosen not to use a complex illumination com- 
pensation  method. 

The technique that we use to classify pixels is to de- 
fine a  polyhedron  in the normalized color space, corre- 
sponding to  the colors that we define to be  ordnance- 
like. The polyhedron we use is a rectangular solid de- 



Figure 1: Hypothesis  detection is performed by first classifying each pixel in the image as ordnance-like or non-ordnance-like 
according to  its color. Hypothesis are  then  detected by finding large connected components using a threshold that varies 
with stereo range data.  (a) Original image. (b) Classification results. The green pixels were classified as ordnance-like. 
(c) Candidates located. 

fined  by bounds  on the normalized color coordinates: 3 Verification 

This  corresponds to a cone  in the unnormalized color 
space  with  a six-sided, polygonal cross-section. 

Now,  we must  determine  the  upper  and lower 
bounds  on  these  coordinates that will  yield good clas- 
sification of the ordnance-like pixels. We perform this 
through  training  using  examples,  using a method  that 
approximates  gradient descent search. At each iter- 
ation of the  training,  the number of errors  that  are 
made by the  application of each of the inequalities is 
counted.  Each threshold is then  updated in the di- 
rection that would  yield  less overall errors.  Training 
of the  parameters  has been  performed  on a dataset 
from the same site  as  the  test  set,  but collected sev- 
eral  months previously. 

In  practice, we compile the pixel classification 
yielded  by the above  method  into a look-up  table. Of 
course, this is a trade-off of time versus space. We 
have  found very fast  and  accurate  results  can  be ob- 
tained  through  the use of six bits to discretize each 
color. This incurs a storage  requirement of 32K. 

After classifying each of the pixels according to  the 
above  criterion, we detect  the connected regions in the 
image that have  been classified as ordnance-like. De- 
tecting  the connected  components  can  be  performed 
in linear time in the size of the image  using a version 
of the union-find data  structure [l]. This  method uses 
a  two-pass  algorithm to detect  the large, connected re- 
gions of ordnance-like pixels  in the image. If the size 
of the region  is larger  than some threshold T (which 
we compute  as a function of the range to  the  location), 
then  the location is considered to be  a  candidate for 
further verification. 

After detecting  candidate  ordnance locations, a va- 
riety of verification modules  can  be applied to  the can- 
didates in order to reduce the likelihood of detecting 
a false positive instance in the imagery. We can  apply 
much more  computation in these verification modules 
than in the  initial hypothesis  generation step since we 
have  greatly  reduced  the  area of the image in which 
we are interested. 

3.1 Hypothesis resampling 

A first step  that is  useful prior to applying  the ver- 
ification modules is to compute  the  dominant orien- 
tation in the image at  the location of the hypothesis. 
We then  resample the image,  using the range and ori- 
entation  information to transform a small area of the 
image  around  the  candidate location such that  the re- 
sampled  image is at a canonical scale and  orientation. 

We detect  the  dominant  orientation in the image 
by applying a simple  gradient  operator  and  then his- 
togramming the gradient orientations  found  (weighted 
by the  gradient  magnitude) at each pixel. The his- 
togram  bin  with  the  largest score is taken to be  the 
dominant  orientation of the hypothesis. 

For each pixel in the resampled  image, we then com- 
pute  the corresponding location in the original image 
according to: 

and 

where 0 is the dominant  orientation, sd is the desired 
scale, S h  is the scale of the hypothesis  according to the 



Figure 2: After  candidates are located,  they  are  resampled 
to a  canonical size and  orientation. 

range data, xi and yi and  the coordinates in the re- 
sampled  image, and xh and 2/h are  the center position 
of the hypothesis in the original image. 

Figure 2 shows  two examples of hypotheses that 
were resampled  from an image. 

3.2 Verification tests 

Once the  candidates have been  resampled, we apply 
a series of tests to them, in order to determine which 
are  actual instances of ordnance. 
Gaussian filter. We apply a filter to  the red  band 
of the image consisting of the  product of a Gaussian 
second derivative in the y-direction (across the cross- 
section of the  ordnance) with a Gaussian in the x- 
direction (across the  length of the  ordnance).  The 
filter is thus given  by: 

This yields high scores when the  ordnance is present 
due to  the yellow  color of the  ordnance in the center 
of the resampled  candidates. 
Parallel edge extraction. The  gradients in the 
resampled candidate  are histogrammed  according to 
their  orientation weighted  by the  gradient  magnitude. 
If an  orientation is found where the score is  very high, 
this  indicates  either a single, very strong,  straight edge 
is present, or a pair of strong parallel edges are present. 
Both of these cases are more likely if the  candidate is 
an  instance of the  ordnance. 

Height evaluation. Since we have  range  data, it is 
sometimes possible to detect  the difference  in height of 
the  terrain at  the location of an  ordnance  instance. A 
simple  technique that we use  is to examine the range 
data corresponding to  the pixels  in each  candidate 
and determine the minimum  and  maximum heights 
present. The difference in these values measures the 
amount of height variation in the  candidate window. 
Contrast evaluation. When the  candidate is an in- 
stance of the  ordnance, we expect a significant gradi- 
ent between the  ordnance  and  the background.  While 
false positives might also yield such a high gradient, 
this will not  always  be the case, and we can thus 
use this information to help discriminate  between  true 
positive and false positives. 

Each of these tests yields a probabilistic score (as 
does the hypothesis  generation stage)  that feeds into 
an evidential reasoning process. 

4 Evidential  reasoning 
Once the various verification modules have gener- 

ated scores for each of the  candidate  ordnance loca- 
tions, we must have some  method for combining the 
scores into a single measure that can  be used to evalu- 
ate each  candidate. We use a linear opinion  pool (see, 
for example, [3]), where the  results of each  measure- 
ment are combined according to some  weighting  factor 
that represents the confidence  in the probability esti- 
mate  that is generated. 

Let H be  the hypothesis that a certain  candidate 
actually represents an  ordnance instance. Each ver- 
ification module Y yields a probability value PU(H) 
that  the hypothesis is correct and  a weighting  factor 
W, ( H )  . We can  combine the values from  any  two ver- 
ification modules (for example v1 and v2) using the 
following relationships: 

Since these equations  are associative, it  does  not 
matter in  which order  the values are combined (the 
final result is the  same).  The  candidate is finally ac- 
cepted if, after  combining all of the scores from the 
various verification modules, the probability value is 
above a pre-determined  threshold. 

5 Results 
These  techniques  have  been  tested  on a set of 350 

images collected at a live-fire test  range  near Nellis  Air 
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(a) (b) (c) 
Figure 3: Results achieved on the Nellis  Air  Force Base data  set.  The boxes correspond to detected ordnance  locations. 

Force Base. The images were collected in a manner to 
simulate  images  from  an  unmanned  ground vehicle. 
The  data set  thus consists of sequences of images cap- 
tured at  short intervals along nearly straight  paths. 
Training for the hypothesis detection stage was per- 
formed  on a set of images collected at the same  site 
collected one  year earlier. Overall, 324 instances of 75 
different bombs appear in the  test  set. We have  eval- 
uated  the techniques  with respect to both  the detec- 
tion  performance  using  a  ROC  curve  and the computa- 
tional  requirements of the techniques  through  bench- 
marking  on a workstation. 

After the  application of the recognition techniques 
to  the complete data  set,  the performance was eval- 
uated versus a manual identification of the instances 
present.  Each  bomb was detected in at least one of the 
images  containing the bomb. Several false negatives 
occurred for instances that appeared at a significant 
distance  from  the  camera  and  thus yielded small im- 
ages of the bomb.  In  these cases, the bomb was always 
found when the  camera traveled closer to  it.  In addi- 
tion, 19 false positives are  detected. Of the hypotheses 
reported,  92.6%  are  actually  bombs. 

Figure  3 shows results  from  this  data  set  that in- 
clude clutter  and cases  where the  assumptions  are vi- 
olated by specularity, inter-reflection, and discolored 
ordnance.  Despite  the violation of various assump- 
tions,  the algorithm  has little  trouble discriminating 
between the  ordnance  and  the background clutter. 

In addition to  the  detection performance, we must 
consider the  computation  time required by the algo- 
rithms, since running in near real-time (2-3 frames  per 
second) is necessary to accommodate a vehicle speed 
of  of 5 MPH. The performance that we have  observed 
on a workstation is 0.287  seconds  per  image to per- 
form the  stereo  and  hypothesis detection stages  and 
0.083  seconds  per candidate to perform verification. A 
real-time system  implementing  these  techniques  with 
off-the-shelf hardware would  likely run slightly slower. 

6 Concluding  remarks 
Considerable work has  been  accomplished  towards 

the generation of the real-time system to perform ord- 
nance recognition. In  the course of this work, several 
lessons have become apparent.  First,  it is crucial for 
the initial hypothesis detection techniques to be ex- 
tremely fast in order to accommodate real-time per- 
formance of the  system. None of the more  complex 
techniques that we experimented  with were  even  close 
to fast enough to support real-time operations.  Next, 
stereo pre-processing yielded crucial information  with 
respect to  the scene depth.  Without  the  depth infor- 
mation,  the hypothesis threshold could  not  be  set at 
a single  value that yield  low rates of both false pos- 
itives and false negatives. Finally, shape was not an 
adequate discriminator by itself. We initially believed 
that  shape would be a more  robust discriminator than 
color due to possible discoloration of the  ordnance. 
However, in many cases the  shape was not reliably de- 
tected, resulting in many false positives. While the 
ordnance was sometimes discolored, it  still  remained 
recognizable with respect to  the background. 
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